Friday, February 13, 2026

AI Prompt - Performance or Load Testing

Prompt (performance level)

Prompt text

“Draft performance and load test scenarios for \[service/endpoint]. Specify SLAs/SLOs, target RPS, concurrency patterns, payload sizes, ramp-up, soak, spike, and metrics to collect (latency percentiles, errors, saturation).”

How to apply critical thinking

·         Clarify performance requirements

·         SLAs (e.g., p95 < 300 ms) and SLOs (e.g., 99.9% of requests under 500 ms).

·         Expected peak vs normal traffic, growth projections.

·         Generate performance scenarios

·         Baseline: light load to validate harness and get reference metrics.

·         Load: sustained target RPS with realistic traffic mix.

·         Stress/spike: sudden surges above normal to find breaking points.

·         Soak: long-running tests to detect leaks, slow degradation.

·         Concurrency: many simultaneous users, with realistic think times.

·         Questions on ambiguities

·         What’s the exact definition of “failure” for this service?

·         Which resources are most constrained (CPU, memory, DB connections, network)?

·         Are there autoscaling policies or rate limits that influence scenarios?

·         What test ideas might be missed

·         Multi-tenant contention: one tenant starving others.

·         Thundering herd effects after outages or cache flushes.

·         Performance in non-happy paths (errors, retries, timeouts).

Output template (performance/load testing)

Context: [service/endpoint, architecture (monolith/microservice), criticality level]

Assumptions: [SLA/SLO targets, expected traffic patterns, caching, autoscaling]

Test Types: [performance, load, stress, soak]

Test Cases:

ID: [TC-PERF-001]

Type: [performance/load]

Title: [e.g., "Sustained load at target RPS"]

Preconditions/Setup:

  - [Prod-like environment, data size, configs]

  - [Monitoring/observability in place]

Steps:

  1. [Configure load tool with target RPS, concurrency, payload mix]

  2. [Run test for defined duration]

Variations:

  - [Baseline low load]

  - [Target steady-state load]

  - [Spike from low to 2x/3x target]

  - [Soak at target for N hours]

  - [Different payload sizes and request mixes]

Expected Results:

  - [Latency percentiles within SLO]

  - [Error rate within acceptable limits]

  - [Resource utilization in safe bounds, no leaks]

Cleanup:

  - [Reset environment, clear queues/caches, roll back configs if changed]

Coverage notes:

  - [Which scenarios/traffic patterns are validated; untested extremes]

Non-functionals:

  - [Capacity headroom, resiliency under stress, autoscaling behavior]

Data/fixtures:

  - [Realistic datasets, representative payload samples]

Environments:

  - [Dedicated perf env, or carefully controlled prod-like setup]

Ambiguity Questions:

- [Exact SLOs, business impact of degradation, allowed mitigation strategies]

Potential Missed Ideas:

- [Downstream dependency limits, batch jobs overlapping with peak traffic, cold-start behavior]

AI Prompt - Compatibility Testing / mobile testing

AI Prompt "Propose compatibility test cases for [feature] across [browsers/devices/OS versions]. Include viewport/resolution, touch v...