Showing posts with label ai prompt ML AI test cases. Show all posts
Showing posts with label ai prompt ML AI test cases. Show all posts

Thursday, February 19, 2026

AI Prompt - ML / AI-Specific Testing

AI Prompt

"Create test cases for [ML model/pipeline]. Include data quality checks, drift detection, edge inputs, fairness/bias slices, latency under load, and rollback if metrics regress."

Applying Critical Thinking

·         Data is part of the contract: Model behavior depends on input distribution; tests should cover data quality, schema, and known edge distributions.

·         Slices matter: Aggregate metrics can hide regressions for subgroups; define slices (demographic, region, product) and test them.

·         Drift and lifecycle: Concept and data drift over time; tests should include drift detection and criteria for retrain or rollback.

·         Determinism and reproducibility: Where possible, fixed seeds and fixtures; document non-deterministic areas and their impact on assertions.

Generate Test Cases for Each Feature

·         Data quality: Schema validation (types, ranges, nulls); missing or corrupt features; duplicates; label quality (if supervised); train/serve skew (same preprocessing).

·         Drift detection: Input distribution drift (stats, histograms); concept drift (label distribution or performance over time); thresholds and alerts; dashboard or pipeline step.

·         Edge inputs: Empty input, all nulls, out-of-range values, very long text, special characters; model doesn’t crash and returns safe default or error.

·         Fairness/bias slices: Performance (accuracy, F1, etc.) per slice (e.g. demographic, region); disparity metrics; minimum performance bar per slice; bias mitigation checks.

·         Latency under load: P50/P95/P99 latency at target RPS; batch vs online; GPU/CPU utilization; timeout and degradation behavior under overload.

·         Rollback / regression: When metrics regress (e.g. accuracy drop, fairness violation): rollback to previous model, feature flag, or fallback; pipeline and alerts tested.

·         Reproducibility: Same input + version → same output (where applicable); training run reproducible from config and data version.

·         Adversarial / robustness: Known adversarial or worst-case inputs; model doesn’t fail badly or expose unsafe behavior.

Questions on Ambiguities

·         What metrics define “good” (e.g. accuracy, F1, fairness parity) and what regression threshold triggers rollback?

·         Which slices are required for fairness reporting (e.g. age, region, product type) and what data is available?

·         How is drift defined (statistical test, threshold on distribution) and who acts on drift alerts?

·         What is acceptable latency (online vs batch) and what is the fallback when the model is slow or down?

·         Are explainability or audit logs required (e.g. feature contributions, request/response logging)?

·         Who approves model promotions and rollbacks (ML team, product, compliance)?

Areas Where Test Ideas Might Be Missed

·         Label and annotation quality: wrong or inconsistent labels in training/eval; impact on reported metrics and fairness.

·         Preprocessing parity: train vs serve preprocessing (tokenization, normalization, feature store); subtle skew.

·         Cold start and rare categories: new users or rare items; model behavior and fallback.

·         Feedback loops: model predictions influence future data (e.g. recommendations); long-term bias or collapse.

·         Versioning and A/B: multiple model versions in production; routing and metric attribution per version.

·         Security of model artifact: tampering, extraction, or inversion; not always in scope but worth noting.

·         Cost and resource: inference cost per request; GPU memory; batch size vs latency tradeoff under load.

Output Template

Context: [system/feature under test, dependencies, environment]

Assumptions: [e.g., auth method, data availability, feature flags]

Test Types: [ML, data quality, fairness, performance]

Test Cases:

ID: [TC-001]

Type: [ML/AI]

Title: [short name]

Preconditions/Setup: [data, env, mocks, flags]

Steps: [ordered steps or request details]

Variations: [inputs/edges/negative cases]

Expected Results: [responses/UI states/metrics]

Cleanup: [teardown/reset]

Coverage notes: [gaps, out-of-scope items, risk areas]

Non-functionals: [perf targets, security considerations, accessibility notes]

Data/fixtures: [test users, payloads, seeds]

Environments: [dev/stage/prod-parity requirements]

Ambiguity Questions:

- [Question 1 about unclear behavior]

- [Question 2 about edge case]

Potential Missed Ideas:

- [Suspicious area where tests might still be thin]

AI in Software Testing: How Artificial Intelligence Is Transforming QA

For years, software testing has lived under pressure: more features, faster releases, fewer bugs, smaller teams. Traditional QA has done her...